HEAD AND NECK DISCUSSION SESSION 4: GROSS ANATOMY

ONN BLOCK

Feb 14, 2024

Discuss

Branchial Arches. Pouches Spinal and Cranial Nerve Reflexes

DEVELOPMENT OF BRANCHIAL ARCHES

EMBRYOLOGICAL DEVELOPMENT ANATOMY

CLINICAL SYNDROMES

FORM GILLS IN FISH

~4 weeks ~11 weeks

Know – Branchial cartilages, muscles, nerves, pouches

Clinical Branchial Cleft Syndromes

ALSO Abnormalities of Thyroid development - NOT DERIVED FROM **BRANCHIAL ARCHES**

GILLS HAVE ARTERIES, MUSCLES AND NERVES

Gills have filaments attached to cartilages

- arteries pass through filaments for gas exchange
- Gills <u>moveable</u> (filter feeding) each has <u>skeletal muscle and nerve</u> (CRANIAL NERVE)

Large surface area - Mackerel (swim a lot) - surface of gills 10 times surface area of body

BRANCHIAL ARCHES HAVE CARTILAGES, MUSCLES, ARTERIES

pharyngeal

BRANCHIAL ARCHES

FORM - CLEFTS ON OUTSIDE (ECTODERM) POUCHES ON INSIDE (ENDODERM)

CHART OF BRANCHIAL ARCH DERIVATIVES FROM FIRST AID - MEMORIZE

Branchial arch derivatives

ARCH	CARTILAGE	MUSCLES	NERVES ^a	ABNORMALITIES/COMMENTS
1st branchial arch	Maxillary process → Maxilla, zygoMatic bone Mandibular process → Meckel cartilage → Mandible, Malleus and incus, sphenoMandibular ligament	Muscles of Mastication (temporalis, Masseter, lateral and Medial pterygoids), Mylohyoid, anterior belly of digastric, tensor tympani, anterior 2/3 of tongue, tensor veli palatini	CN V ₃ chew	Pierre Robin sequence – micrognathia, glossoptosis, cleft palate, airway obstruction Treacher Collins syndrome – neural crest dysfunction → mandibular
2nd branchial arch	Reichert cartilage: Stapes, Styloid process, lesser horn of hyoid, Stylohyoid ligament	Muscles of facial expression, Stapedius, Stylohyoid, platySma, posterior belly of digastric	CN VII (facial expression) smile	hypoplasia, facial abnormalities
3rd branchial arch	Greater horn of hyoid	Stylopharyngeus (think of stylo pharyngeus innervated by glosso pharyngeal nerve)	CN IX (stylo- pharyngeus) swallow stylishly	
4th–6th branchial arches	Arytenoids, Cricoid, Corniculate, Cuneiform, Thyroid (used to sing and ACCCT)	4th arch: most pharyngeal constrictors; cricothyroid, levator veli palatini 6th arch: all intrinsic muscles of larynx except cricothyroid	4th arch: CN X (superior laryngeal branch) simply swallow 6th arch: CN X (recurrent/ inferior laryngeal branch) speak	Arches 3 and 4 form posterior ½ of tongue: arch 5 makes no major developmental contributions

KNOW THIS FOR STEP 1

BREAK DOWN TO COMPONENT IN LECTURE HANDOUT

Arch- Cranial Nerve

STRUCTURES DERIVED FROM BRANCHIAL ARCHES

	ARCH/NERVE	SKELETAL	LIGAMENTS	MUSCLES
1- V	First (V)	1) Maileus 2) Incus	1) Ant. ligament of malleus 2) Sphenomandibular ligament	1) Muscles of Mastication 2) Tensor tympani 3) Tensor palati 4) Mylohyoid 5) Ant. belly of Digastric
2- VII	Second (VII)	1) Stapes 2) Styloid process 3) Hyoid bone - lesser hom, upper half of body	Stylohyoidligament	1) Muscles of Facial Expression 2) Stapedius 3) Stylohyoid 4) Post. belly of Digastric
3- IX	Third (IX)	Hyoid bone - greater horn, lower half of body		Stylopharyngeus
4- X	Fourth (X)	Cartilages of Larynx		1) All muscles of Larynx 2) All muscles of Pharynx (except Stylopharyngeus) 3) All muscles of Soft Palate (except Tensor palati)
6- XI	Sixth (XI)			1) Stemocleidomastoid 2) Trapezius

CHART OF BRANCHIAL ARCH DERIVATIVES FROM FIRST AID - MEMORIZE

IDENTIFY ARCH/NERVE QUESTIONS

KAPLAN REVIEW QUESTION

A 43-year-old female is diagnosed with a condition that causes excruciating pain near her nose and mouth. The involved nerves innervates which of the following branchial arches?

A. First B. Second C. Third D. Fourth

MUSCLES AND NERVES = BRANCHIOMOTOR MUSCLES FROM CRANIAL NERVES HANDOUT (INCANTATION)

10) BRANCHIOMOTOR - voluntary motor to skeletal muscles of face, ear, pharynx and neck that are derived from branchial arches.

	<u>Nerve</u>	Innervates
FIRST ARCH	V (Trigeminal) (all in V3)	muscles of mastication mylohyoid tensor tympani tensor palati anterior belly of digastric
SECOND ARCH THIRD	VII (Facial)	muscles of facial expression stylohyoid posterior belly of digastric stapedius
ARCH	IX (Glossopharyngeal)	stylopharyngeus
FOURTH, SIXTH ARCH	X (Vagus)	all muscles of pharynx (except stylopharyngeus) muscles of larynx all muscles of palate (except tensor palati)
	XI (Accessory)	sternocleidomastoid trapezius

CLINICAL: BRANCHIAL POUCHES, GROOVES, MEMBRANES

POUCH	FORMS	CLINICAL	
First	1) Auditory tube 2) Tympanic cavity	First Branchial 'Cleft' cyst - tract linked to external auditory meatus	
Second	Lining (crypts) of palatine tonsils	Second Branchial 'Cleft' cyst - tract linked to tonsillar fossa (palatine tonsils)	
Third	1) Inferior parathyroid gland 2) Thymus	Third Branchial 'Cleft' cyst - tract at thyrohyoid membrane or piriform recess	
Fourth	1) Superior parathyroid gland 2) C-cells of Thyroid	does not form	
Sixth (XI)			

Note: Cysts and fistuli - in lateral neck are anterior to Sternocleidomastoid muscle

CLEFT	FORMS	
First	External Auditory Meatus	

MEMBRANE	FORMS	<u>GROOVE</u>
First	Tympanic membrane	

NOTE: INNERVATION OF BRANCHIAL POUCHES DOES NOT FOLLOW INNERVATION OF ARCH STRUCTURES (ex. muscles)

PRACTICE QUESTION CLINICAL VIGNETTE

Note: Questions about Branchial Pouches can be asked as Branchial Arches A young child is brought to a pediatrician by his parents. The child (photo) shows micrognathia (small mandible) and downward slanting eyes. Tests of auditory function indicate a hearing loss. The physician suspects that the child has Treacher-Collins syndrome, a congenital disorder associated with malformation of structures that develop in association with the first branchial arch. Which of the following structures normally develops with the first branchial arch and, if malformed. could contribute to the hearing loss?

A. Auditory tubeB. CochleaC. Malleus and IncusD. Vestibulocochlear nerveE. Stapes

BRANCHIAL GROOVES (CLEFTS) AND MEMBRANES

Only First Branchial Groove and Membrane Normally form Structures in Adult

First Groove - External Auditory Meatus First Membrane = Tympanic Membrane

BRANCHIAL GROOVES

Other Grooves develop in longer depression Cervical Sinus

Note: <u>Cervical</u> <u>sinus</u> normally obliterated but can persist

BRANCHIAL ANOMALIES

Branchial <u>Sinus = Blind pouch</u> from Pharynx Branchial <u>Fistula = Channel</u>, often connecting Pharynx to skin of neck; usually passes <u>Anterior to</u> <u>Sternocleidomastoid</u>, between Int. and Ext. Carotid A.

FIRST BRANCHIAL POUCH SYNDROME – channel to External Auditory Meatus

PRACTICE QUESTION CLINICAL VIGNETTE

A 24 year old woman develops a mass in her neck (see photo above). The mass is located immediately anterior to the sternocleidomastoid muscle. The physician suspects that this condition has result from a branchial cyst. During surgery, the mass is found to be connected to a tract that extends superiorly and medially. The tract is most likely to be connected to which of the following structures?

- A. Middle meatus of the nasal cavity
- **B.** Pharyngeal tonsil
- C. Tonsillar fossa (palatine tonsils)
- **D. Lingual tonsil**
- E. Mandibular fossa

SECOND BRANCHIAL POUCH SYNDROME

SECOND BRANCHIAL POUCH FORMS CRYPTS (LININGS) OF PALATINE TONSILS

Branchial Fistula - drains to neck

Branchial Cyst often remnant of Cervical Sinus

DEVELOPMENT OF THYROID

1) Thyroid start as Median endodermal Thickening on floor of pharynx at future junction of anterior 2/3 and posterior 1/3 of tongue (marked by Foramen Cecum)

2) Elongates to form Thyroid Diverticulum; descends ant. to hyoid bone and larynx
3) Thyroglossal duct connects Diverticulum to Foramen cecum

CONGENITAL MALFORMATIONS

LINGUAL THYROID* - gland in tongue

C. PYRAMIDAL LOBE. ABSENCE OF ISTHMUS

Thyroglossal Duct Remnants can form thyroid tissue (cysts) along path (midline, ant. to hyoid, larynx) Pyramidal Lobe - 50% of people; attached to hyoid by fibrous strand; no clinical problems

LINGUAL THYROID* -Thyroid gland in tongue

THYROGLOSSAL DUCT CYST *- midline of neck, path of migration

AT: Junction of anterior 2/3 and posterior 1/3 of tongue

SPINAL REFLEXES

SPINAL REFLEXES AND DISORDERS

REFLEX	STIMULUS/SENSE ORGAN(S) EXCITED	NORMAL RESPONSE	UPPER MOTOR NEURON DISORDERS
Stretch (Myotatic, Deep Tendon) Reflex – Compensatory maintain position (ex. riding on moving bus)	Rapid Stretch of muscle (test: tap on muscle tendon) Excites Muscle Spindle Primary (Ia) and Secondary (II) sensory neurons (NOT Golgi Tendon Organ)	Stretched muscle contracts rapidly (monosynaptic connection); also Excite synergist and Inhibit antagonist Note: Gamma motor neurons can enhance stretch reflexes, tell patient to relax before test	<u>Hyperreflexia</u> - (increase) - characteristic of Upper Motor Neuron lesions (ex. spinal cord injury, damage Corticospinal tract); note: <u>Clonus</u> = hyperreflexia with repetitive or sustained contractions to single stimulus
Autogenic Inhibition - Limits Muscle Tension	Large force on tendon excites Golgi Tendon Organ lb (test: pull on muscle when resisted)	Muscle tension decreases; Also inhibit synergist muscles; excite antagonist muscles	<u>Clasped Knife Reflex</u> - occurs in Upper Motor Neuron lesions - forceful stretch of muscle is first resisted then collapses
Flexor Reflex - Protective avoidance reflex	Sharp, painful stimulus, as in stepping on nail; Excites - Cutaneous and pain receptors (test: stroke foot with pointed object)	Limb is rapidly withdrawn from stimulus; protective reflex; also inhibit extensors of same limb and excite extensors of opposite limb (Crossed Extensor Reflex)	<u>Babinski sign</u> -toes extend (dorsiflex) to cutaneous stimulus of sole of foot (normally plantar flex); characteristic of Upper Motor Neuron lesion

1) Stimulus -<u>fast stretch</u> of muscle 2) Sense organ excited - Muscle spindle Ia and II sensory neurons 3) Primary response muscle that is stretched contracts rapidly

OTHER COMPONENTS OF STRETCH REFLEX

1) Excite synergist muscles spindle afferents also make excitatory monosynaptic connections with synergist muscles

2) Inhibit antagonist muscles -RECIPROCAL INHIBITION -Spindle activity also excites interneurons that make inhibitory synapses on motor neurons to antagonist muscles (polysynaptic)

FLEXOR REFLEX: OTHER EFFECTS ALL ARE POLYSYNAPTIC BY INTERNEURONS

1) Excite synergist muscles - excite other flexors in same leg (other joints)

2) Inhibit antagonist muscles - inhibit Extensors in same leg

3) CROSSED EXTENSION REFLEX - EXCITE EXTENSORS AND INHIBIT FLEXORS IN OPPOSITE LEG

**

FUNCTION: OTHER LEG PROVIDES SUPPORT WHEN FIRST LEG IS LIFTED

FLEXOR REFLEXES CAN CHANGE AFTER LESIONS, DISEASE PROCESSES

toes

AUTOGENIC INHIBITION

lb

Other effects a. Inhibit synergist muscles **b. Excites antagonist** muscles -

CLASPED KNIFE REFLEX: in

Upper motor neuron lesions, tonus increases, resistance to stretch increases; if sufficient force is applied, limb resistance suddenly decreases (like pocket knife snapping shut)

CLASPED KNIFE REFLEX: is an example of Autogenic inhibition. It is elicited in patients with Upper Motor neurons lesions due to high tonus in muscle.

1) PHYSICIAN TRIES TO FLEX ELBOW JOINT OF PATIENT WITH UPPER MOTOR NEURON LESION

**

2) KEEP TRYING AND TENSION ON TRICEPS TENDON EXCITES GOLGI TENDON ORGANS 3) TRICEPS RELAXES AND RESISTANCE SUDDENLY DECREASES: ELBOW JOINT FLEXES

HIGH IMPOSED FORCE EXCITES GOLGI TENDON ORGANS IN TRICEPS TENDON WHICH INHIBITS MOTOR NEURONS TO TRICEPS MUSCLE

ELBOW JOINT SNAPS SHUT LIKE A POCKET KNIFE = CLASPED KNIFE REFLEX

REFLEXES OF CRANIAL NERVES

REFLEXES OF CRANIAL NERVES

REFLEX	STIMULUS	SENSORY	RESPONSE	CLINICAL
Pupillary Light Reflex (II to III)	Test: Shine light in eye	Light detected by Optic Nerve	Excite Constrictor of pupil of eye (III Short Ciliary nerves (Ciliary Ganglion, parasympathetic)	Extensively used to check CN II; Absence of Pupillary Light Reflex can indicate catastrophe (brain herniation)
Corneal Reflex (V to VII)	Touch cornea of eye with cotton	Touch detected by Long Ciliary nerves (V1), Somatic sensory	Close eye (VII to Orbicularis Oculi muscle) Branchiomotor	Absence of Corneal Reflex; Test for damage to V1 sensory, VII motor
Gag Reflex (IX to X)	Test: Touch posterior tongue, oropharynx;	Excites Visceral Sensory endings in Glossopharyngeal N. (IX)	Excite muscles of pharynx, palate; Vagus N. (X), Branchiomotor	Other symptoms of Vagus damage (X); Patient Say's Ahh: soft palate not elevated on ipsilateral side (paralyze Levator Palati); uvula deviated away from side of lesion
Jaw Jerk Reflex Stretch (Deep Tendon) Reflex (V to V)	Test: tap down on mandible; Stretch muscles of mastication (ex. Masseter)	Excites Muscle Spindle sensory neurons in Trigeminal nerve (V)	Contract muscles that elevate mandible Motor - V3	<u>Hyporeflexia</u> - indicates Trigeminal nerve damage

1. PUPILLARY LIGHT REFLEX - II TO III

AFFERENT ARM OF REFLEX

SENSORY STIMULUS

LIGHT IN EYE

EFFERENT ARM OF REFLEX

MOTOR RESPONSE

CONSTRICT PUPIL

REFLEX IS CONSENSUAL – LIGHT IN ONE EYE CAUSES PUPILLARY CONSTRICTION IN BOTH EYES

**

PUPILLARY LIGHT REFLEX

CN II - OPTIC NERVE -DETECTS LIGHT

CN III - OCULOMOTOR - parasympathetics from Ciliary Ganglion in Short Ciliary nerves

OPTIC NERVE -CN II VISION

2. CORNEAL REFLEX - V TO VII

AFFERENT ARM OF REFLEX

SENSORY STIMULUS

TOUCH CORNEA

TRIGEMINAL -V1 - LONG CILIARY NERVES TO CORNEA

EFFERENT ARM OF REFLEX

MOTOR RESPONSE CLOSE

EYELID

FACIAL -VII - MOTOR TO ORBICULARIS OCULI (Branchiomotor)

CORNEAL REFLEX - V to VII

SHORT CILIARY NERVES (III), CILIARY GANGLION PARASYMPATHETIC

LONG CILIARY NERVES (V1) -SOMATIC SENSORY TO CORNEA

- Palpebral part - Close eyelids - Orbital part - Buries eyelids, Ex. sandstorm BRANCHIOMOTOR - VII

empora

Fasci

EYELID

VII - CLOSE

ORBICU-LARIS OCULI M.

LESIONS OF SYMPATHETICS PRODUCE SYMPTOMS IN EYE: HORNER'S SYNDROME

HORNER'S SYNDROME - damage to Sympathetic pathways: symptoms involve structures of eye and head -

HORNER'S SYNDROME

CLINICAL

CAN DAMAGE SYMPATHETIC CHAIN IN NECK; SHOW SYMPTOMS IN EYE AND FACE SYMPTOMS -1) <u>MIOSIS</u> - pupillary constriction; PARALYSIS OF PUPILLARY DILATOR MUSCLE 2) <u>PTOSIS</u> - drooping eyelid; PARALYSIS OF SMOOTH MUSCLE PART OF LEVATOR PALPEBRAE SUPERIORIS 3) <u>ANHYDROSIS</u> - lack of sweating; LOSS OF INNERVATION OF SWEAT GLANDS

PTOSIS - DAMAGE PATHWAY OF SYMPATHETICS TO EYE

2) PRE-GANGLIONIC AXONS ASCEND CHAIN AND SYNAPSE IN SUPERIOR CERVICAL GANGLION

1) OUT T1, T2

Internal carotid plexus

3) POST-GANGLIONIC FIBERS JOIN PLEXUS ON INTERNAL CAROTID ARTERY 4) <u>PARALYZE</u> <u>SMOOTH</u> <u>MUSCLE OF</u> <u>LEVATOR</u> <u>PALPEBRAE</u> <u>SUPERIORIS</u>

PTOSIS = EYELID DROOP

PTOSIS = DROOPING EYELID; CAN BE SIGN OF DAMAGE TO OCULOMOTOR NERVE (III) OR SYMPATHETICS

SKELETAL MUSCLE PART

OCULOMOTOR NERVE PALSY other symptoms: - <u>Pupil is dilated</u> - <u>denervate Pupillary constrictor</u> (<u>Mydriasis</u>) - Also affect Eye movements - Accommodation

CN III SYMPTOMS – EYELID DROOP + CONSTRICTED PUPIL

SMOOTH MUSCLE PART

SYMPATHETICS - HORNER'S SYNDROME -

- <u>Miosis denervate Pupillary</u> <u>dilator; constricted pupil</u>
- Anhydrosis lack of sweating

SYMPATHETIC SYMPTOMS – EYELID DROOP + CONSTRICTED PUPIL

Ptosis (drooping of the eyelid)