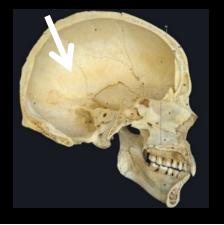
INTRODUCTION TO ANATOMY AND NERVOUS SYSTEM - PART 2 - 2023

CLINICAL - DIFFERENTIAL DIAGNOSIS OF LESIONS IN CNS VS PERIPHERAL NERVE DAMAGE

OUTLINE: INTRODUCTION TO NERVOUS SYSTEM - TERMINOLOGY

I. DIVISIONS OF NERVOUS SYSTEM - CNS AND PNS, AFFERENT AND EFFERENT NEURONS
II. SOMATIC AND VISCERAL (AUTONOMIC)
NERVOUS SYSTEMS

III. SPINAL NERVES - BASIC STRUCTURES
IV. REFLEXES AND CLINICAL TESTS OF NERVOUS
SYSTEM FUNCTIONS - SYMPTOMS ARE CONSEQUENCES
OF ANATOMY


INTRODUCTION TO THE NERVOUS SYSTEM: MAJOR DIVISIONS – CENTRAL NERVOUS SYSTEM

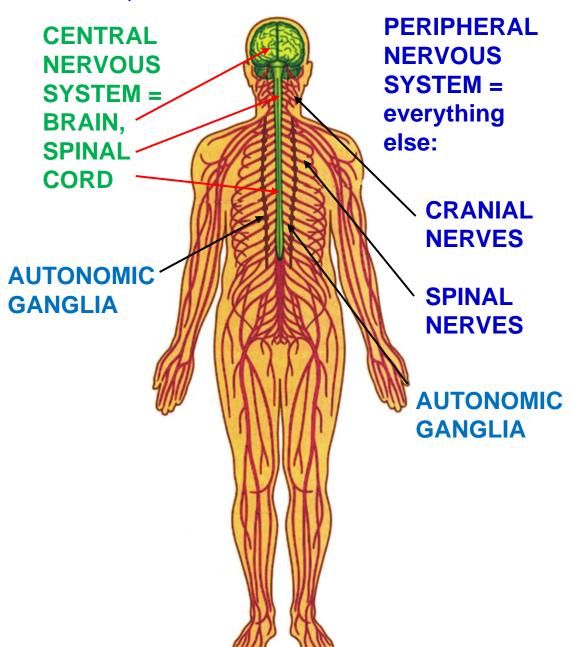
SKULL


Vertebrae

CRANIAL CAVITY – inside Skull

BRAIN - the 'stuff which

dreams are made on'



SPINAL CORD

Most complicated system in human body; cessation of function = death

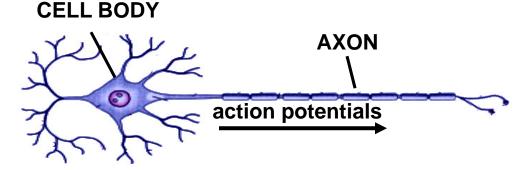
CENTRAI SYSTEM (CNS) definition is precise; consists of **BRAIN** (contained in cranial cavity of skull) and **SPINAL CORD** (contained in vertebral canal inside column of vertebrae [back bones]).

I, INTRODUCTION: CENTRAL/PERIPHERAL NERVOUS SYSTEMS

A. 1. CENTRAL NERVOUS

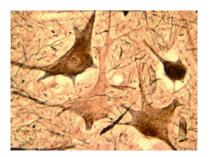
SYSTEM (CNS) – BRAIN and
SPINAL CORD

2. PERIPHERAL NERVOUS
SYSTEM (PNS) = EVERYTHING
ELSE INCLUDING:

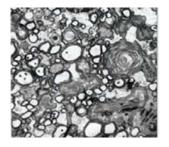

TYPES OF NERVES - CRANIAL NERVES, SPINAL NERVES that carry signals to and from the CNS;

GANGLIA - collections of nerve cell bodies, including GANGLIA OF AUTONOMIC NERVOUS SYSTEM

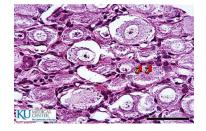
<u>SENSE ORGANS</u> – ex. eye, sensory endings in skin, etc.

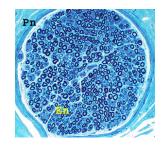

INTRO: DIFFERENCES IN TERMINOLOGY OF GROUPS OF CELL BODIES AND AXONS

STRUCTURE
OF NERVE
CELL (NEURON)

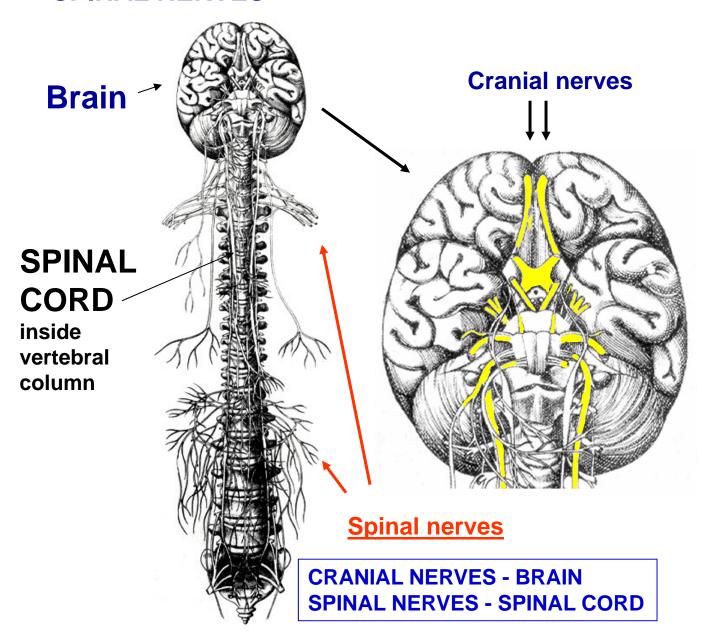


TERMINOLOGY OF GROUPS OF CELL BODIES AND AXONS DIFFERS IN CENTRAL (CNS) AND PERIPHERAL (PNS) NERVOUS SYSTEMS


NUCLEI - in CNS

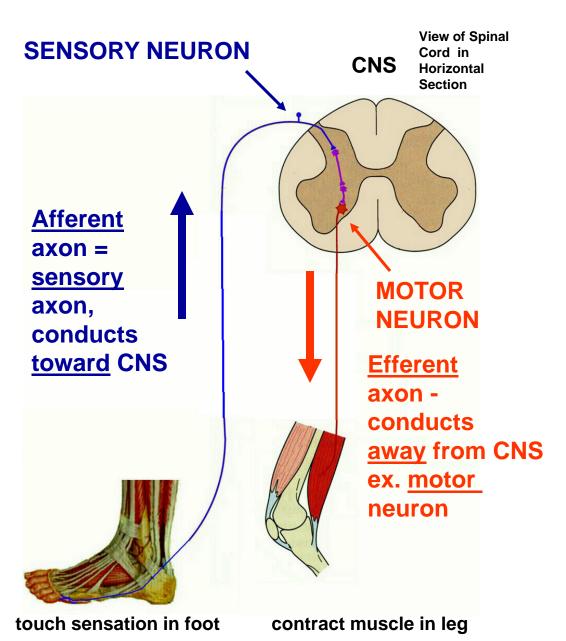

TRACTS - in CNS

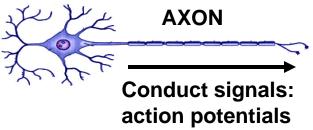
GANGLIA - in PNS


NERVES - in PNS

Groups of nerve
cell bodies are
called
NUCLEI in CNS
GANGLIA IN PNS

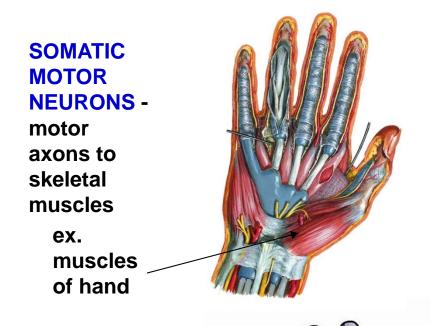
Groups of axons are called TRACTS in CNS NERVES in PNS


TERMINOLOGY - TYPES OF NERVES: CRANIAL NERVES AND SPINAL NERVES


Spinal nerves and Cranial nerves are named for regions of nervous system they arise from/project to.

1. Cranial
nerves - arise
from/project to
brain; there are
12 Cranial nerves
2. Spinal nerves
- arise from
project to spinal
cord; there are
typically 31
Spinal Nerve

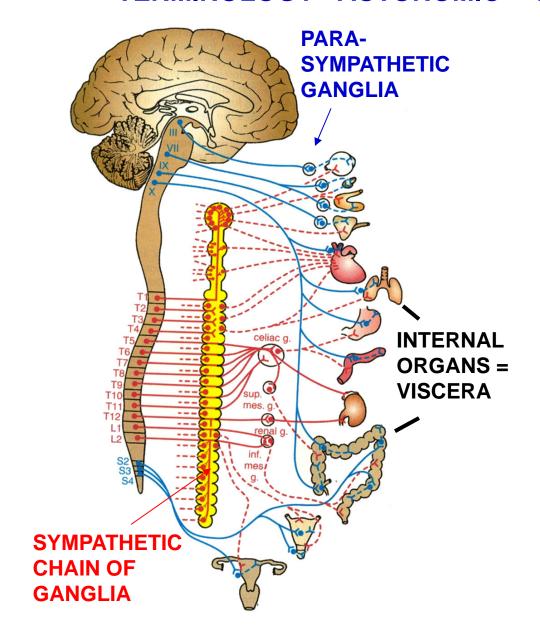
TERMINOLOGY: AXONS IN PERIPHERAL NERVES


NEURON = nerve cell

a. Sensory axons

(Afferents) axons of sensory neurons that conduct signals toward CNS (ex. sensory neurons signaling touch, taste, pain, etc.)
b. Motor axons (Efferents) - axons of neurons that conduct signals away from CNS; most motor axons that cause contractions of skeletal muscles; OTHER AXONS Visceral Motor (= AUTONOMICS; pathway more complicated).

TERMINOLOGY - MAJOR DIVISIONS OF NERVOUS SYSTEM


SOMATIC
SENSORY
NEURONS sensory axons
to skin; also
joints, body
position

ex.
skin
of hand

Major divisions of nervous system - SOMATIC AND VISCERAL - terminology based upon function but very confusing

- 1. Somatic Nervous system voluntary, conscious part of nervous system
- a. Somatic Motor control skeletal muscle; voluntary activities (ex. limb or eye movements, walking); voluntary actions.
- b. Somatic Sensory sensory neurons that innervate skin, joints; provide conscious sensation of touch, pressure, pain etc.

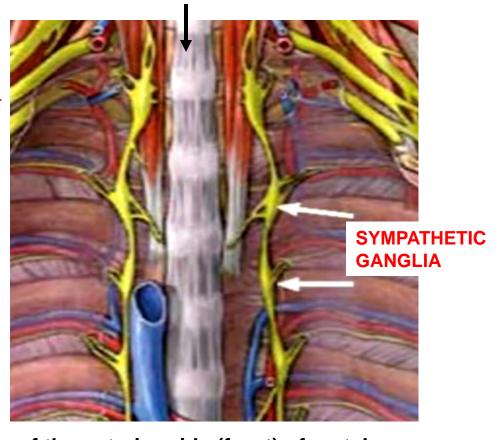
TERMINOLOGY - AUTONOMIC = VISCERAL NERVOUS SYSTEM

Autonomic Nervous system = Visceral nervous system - involuntary, unconscious part of nervous system; (autonomic means self-regulating or AUTOMATIC).

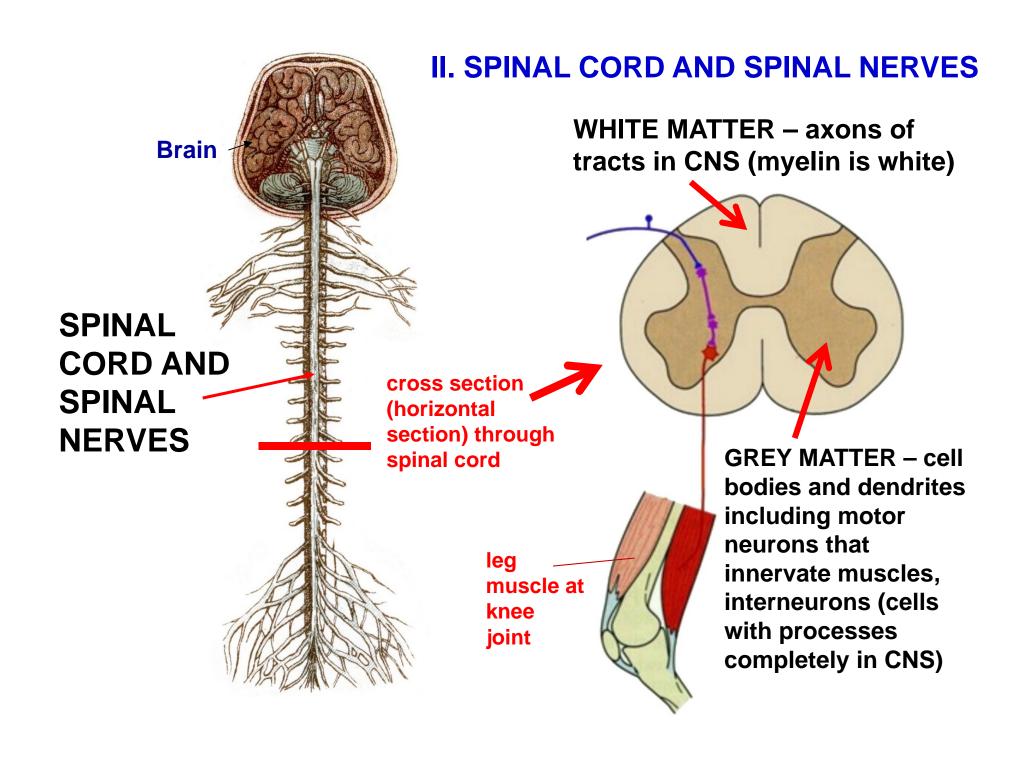
a. Visceral Motor
(parasympathetic and
sympathetic) - control smooth
and cardiac muscle, glands
and internal organs; largely
unconscious actions
b. Visceral Sensory - sensory
neurons that innervate internal
organs, blood vessels; only
provide imprecise localization
of sensation and dull sense of
pressure, pain, etc.

THORAX =

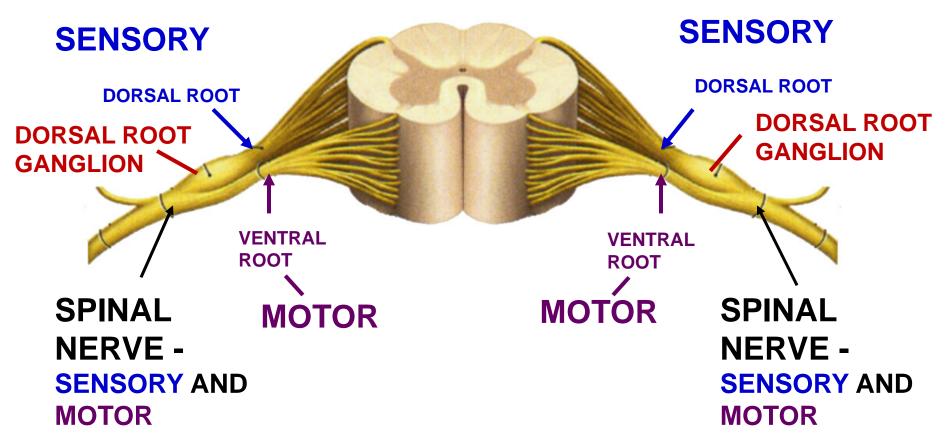
SYMPATHETIC


AUTONOMIC

CHAIN OF


GANGLIA

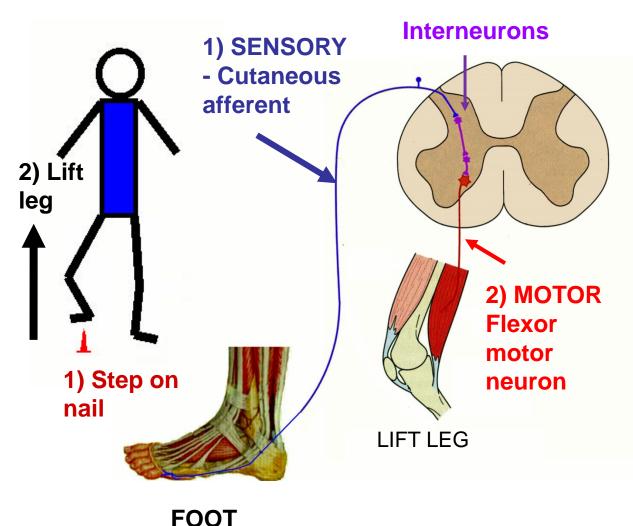
CHEST


Spinal cord located inside of vertebrae (vertebral canal)

View of the anterior side (front) of vertebrae (back bones) inside the thorax (chest cavity); chain of ganglia are on sides of vertebrae (paravertebral)

SPINAL NERVE FORMED FROM SENSORY AND MOTOR ROOTS

- Dorsal Roots; contain sensory (afferent) axons
- Ventral Roots; contain motor (efferent) axons
- Dorsal and Ventral roots unite to form a <u>Spinal Nerve</u>; which <u>contains sensory and motor axons</u>
- DORSAL ROOT GANGLION contains cell bodies of sensory neurons

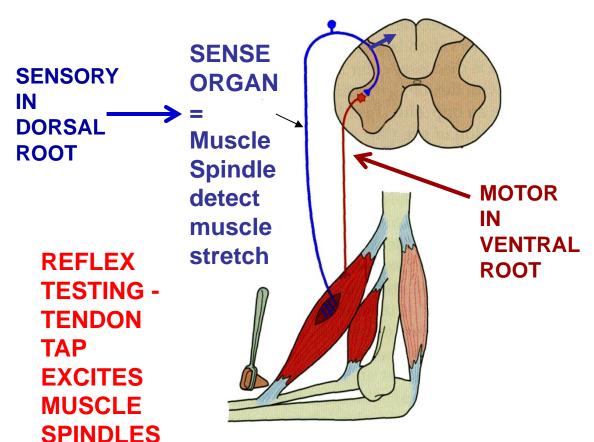

III. SPINAL REFLEXES

SENSORY STIMULUS

MOTOR RESPONSE

Definition of a Reflex - <u>stereotyped motor response</u> to a <u>specific sensory stimulus</u>

1) FLEXOR REFLEX: STEPPING ON A NAIL

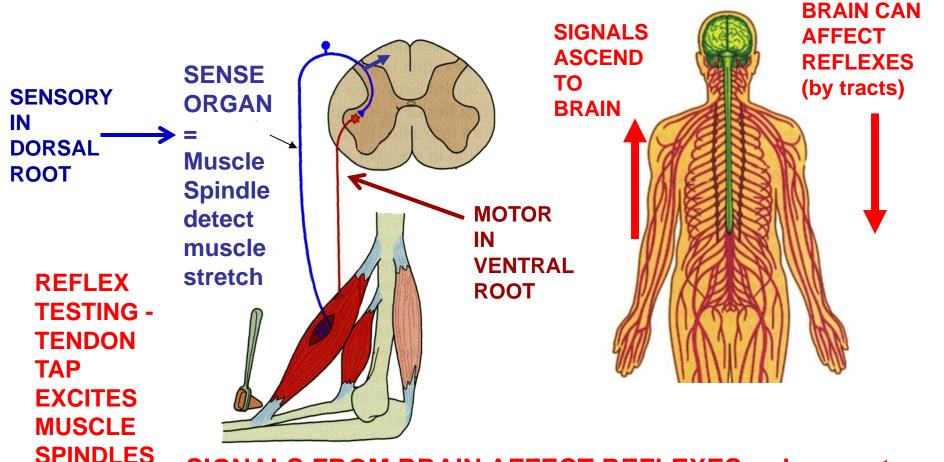

FLEXOR REFLEX

1) SENSORY STIMULUS
- foot steps on nail
2) MOTOR RESPONSE lift leg before foot is
impaled by nail

PATHWAY

1) SENSORY NEURONS
IN SKIN (CUTANEOUS)
detects pain
2) INTERNEURONS IN
CNS - transmit signal
3) MOTOR NEURONSactivate Flexor muscles
to lift leg

2) STRETCH (DEEP TENDON) REFLEXES - tapping on the tendon of a muscle stretches the muscle and reflexively causes it to contract - CLINICALLY IMPORTANT


STRETCH (DEEP TENDON) REFLEX

1) SENSORY STIMULUS stretch of muscle
2) MOTOR RESPONSE contract muscle that is
stretch

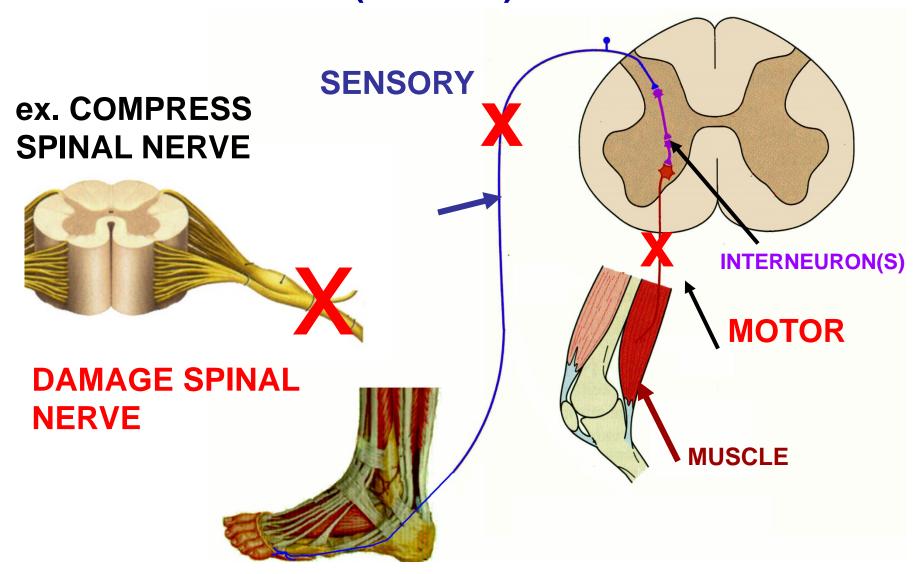
PATHWAY

1) SENSORY Muscle spindle (sensory endings inside muscle) detect stretch
2) MOTOR NEURONS-activate motor neurons to muscle that is stretched

2) STRETCH (DEEP TENDON) REFLEXES - tapping on the tendon of a muscle causes the muscle to contract – CLINICALLY IMPORTANT

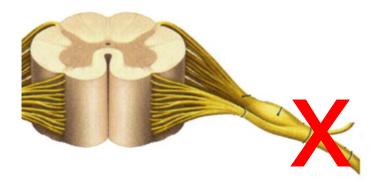
SIGNALS FROM BRAIN AFFECT REFLEXES - damage to tracts (ex. Corticospinal tract) can INCREASE stretch reflexes (HYPERREFLEXIA)

NEURONS IN


NORMAL STRETCH (DEEP TENDON) REFLEXES - ELICIT BY TAPPING ON MUSCLE TENDON - CAUSES MUSCLE TO CONTRACT

NORMAL PATIENT

download videos from Zillanatomy: https://www.zillanatomy.com/Pandemic_anatomy.htm


DAMAGE (LESION) OF PNS

SPINAL NERVE DAMAGE CAN AFFECT SENSORY AND MOTOR NEURONS

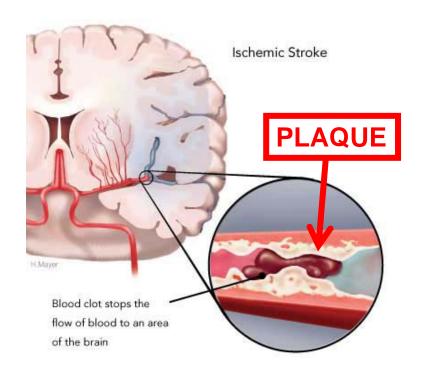
DAMAGE (LESION) OF PNS

ex. COMPRESS SPINAL NERVE

DAMAGE SPINAL NERVE

STRUCTURES AFFECTED:

- 1) Motor Neurons
- 2) Sensory neurons


SYMPTOMS

- 1) Muscle is completely paralyzed (Flaccid Paralysis) or partially paralyzed (weakness)
- 2) Sensory loss is complete (total numbness) or partial (paresthesia = 'pins and needles' sensation)
- 3) DECREASED (HYPOREFLEXIA) OR NO (ARELFEXIA) STRETCH REFLEXES

SPINAL NERVE DAMAGE CAN AFFECT SENSORY AND MOTOR NEURONS

DAMAGE (LESION) OF CNS

ex. STROKE – blood supply to brain interrupted or reduced

Note: this illustrates an Ischemic stroke caused by a clot; other strokes are Hemorrhagic, caused by bleeding

STRUCTURES AFFECTED:

Neurons and tracts in CNS; (tracts that generate voluntary muscle contractions also called Upper Motor Neurons; ex. Corticospinal Tract)

SYMPTOMS

Disrupt voluntary control of movement and regulation of reflexes (remove inhibition):

- 1) No or weakened voluntary movements
- 2) INCREASE STRETCH (DEEP TENDON) REFLEXES (HYPERREFLEXIA)
- 3) MANY OTHER SYMPTOMS

Causes - Example - Stroke (interruption of blood supply to brain – can damage Corticospinal tract

STRETCH (DEEP TENDON) REFLEXES - ELICIT BY TAPPING ON MUSCLE TENDON - CAUSES MUSCLES TO CONTRACT

ABNORMAL - CHILD WITH CNS LESION (STROKE) - REFLEXES HYPERACTIVE ON RIGHT SIDE

MAJOR TAKE-HOME POINTS FROM THIS LECTURE

- 1- Know definitions of terms in Summary
- 2- <u>Damage Spinal Nerve</u> Spinal nerves contain axons of sensory AND motor neurons; damage can produce <u>Sensory deficits</u> (numbness or paresthesias (tingling sensation) AND <u>motor deficits</u> (paralysis, weakness) depending upon extent of lesion. Also, <u>spinal reflexes</u> can be <u>DECREASED</u> or eliminated.
- 3- <u>Damage Central Nervous system tracts</u> Can decrease or eliminate voluntary movements; however, spinal reflexes can still be elicited; damage to descending tracts (Corticospinal tract) can INCREASE spinal stretch reflexes.

SUMMARY DEFINITIONS OF TERMS

Definitions of Terms

Central nervous system (CNS) = brain and spinal cord

Peripheral nervous system (PNS) = all nerves, ganglia, sense organs outside CNS

Cranial nerves = nerves that arise from brain (there are 12 cranial nerves)

Spinal nerves = nerves that arise from spinal cord (there are 31 spinal nerves)

Afferent axons = axons of sensory neurons (conduct toward CNS)

Efferent axons = axons of motor neurons, neurons of autonomic nervous system; (conduct away from CNS)

Somatic = voluntary

Somatic efferents - axons innervate skeletal muscle:

Somatic afferents - sensory neurons innervate skin, joints muscles (also oral cavity and nasal cavity); sensory perception is precise

Visceral = involuntary

Visceral efferents (= AUTONOMICS) - innervate smooth muscle, glands, gut, blood vessels Visceral afferents - sensory neurons innervate internal organs; sensory perception is imprecise Reflex - a stereotyped motor (muscle) response to a specific sensory signal.

Flexor Reflex - sensory - stepping on nail; motor - lift leg

Stretch (Deep Tendon Reflex - sensory - stretch muscle (tap on tendon) activates Muscle Spindle sensor neurons; motor - muscle contracts.

SUMMARY CHART: LESIONS OF PNS AND CNS - Symptoms are a direct consequence of Anatomy

SUMMARY: INTRODUCTION TO LESIONS OF PNS AND CNS – Major symptoms and causes

Lesion	Structures Affected	Symptoms	Causes (Examples)
DAMAGE PNS (ex. Peripheral nerve injury, Flaccid Paralysis)	Motor Neurons = Motor neurons with axons that innervate skeletal muscles (also called Lower (Alpha) Motor Neuron Lesion, 2) Sensory neurons	1) Muscle is completely paralyzed (Flaccid Paralysis) or partially paralyzed (weakness) 2) Sensory loss is complete (total numbness) or partial (paresthesia = 'pins and needles' sensation) 3) STRETCH REFLEXES ARE REDUCED OR ABSENT	1) Compression of spinal nerve 2) MANY OTHER CAUSES
DAMAGE CNS (ex. Stroke = interrupt blood supply to parts of CNS)	Neurons and tracts in CNS - Descending tracts that generate voluntary muscle contractions are also called Upper Motor Neurons (ex. Corticospinal Tract)	Disrupt voluntary control of movement and regulation of reflexes (remove inhibition): 1) No or weakened voluntary movements 2) STRETCH REFLEXES CAN BE INCREASED (Hyper-reflexia) 3) MANY OTHER SYMPTOMS	Example - Stroke (interruption of blood supply to brain – can damage Corticospinal tract

Note: Some diseases damage both CNS and PNS - (ex. ALS Amyotrophic Lateral Sclerosis)